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Next-generation sequencers have sufficient power to analyze 
simultaneously DNAs from many different specimens, a practice known as 
multiplexing.  Such schemes rely on the ability to associate each sequence 
read with the specimen from which it was derived.  The current practice of 
appending molecular barcodes prior to pooling is practical for parallel 
analysis of up to many dozen samples.  Here, we report a strategy that 
permits simultaneous analysis of tens of thousands of specimens.  Our 
approach relies on the use of combinatorial pooling strategies in which 
pools rather than individual specimens are assigned barcodes.  Thus, the 
identity of each specimen is encoded within the pooling pattern rather than 
by its association with a particular sequence tag.  Decoding the pattern 
allows the sequence of an original specimen to be inferred with high 
confidence. We verified the ability of our encoding and decoding strategies 
to accurately report the sequence of individual samples within a large 
number of mixed specimens in two ways.  First, we simulated data both 
from a clone library and from a human population in which a sequence 
variant associated with cystic fibrosis was present.  Second, we actually 
pooled, sequenced, and decoded identities within two sets of 40,000 
bacterial clones comprising ~20,000 different artificial MicroRNAs targeting 
Arabidopsis or human genes. We achieved greater than 97% accuracy in 
these trials. The strategies reported here can be applied to a wide variety of 
biological problems, including the determination of genotypic variation 
within large populations of individuals. 
 

 



There are many biological applications wherein the sequence of a small region must be 

determined from many independent specimens and wherein the link between the specimen 

and the sequence must be preserved.   Examples might include studies of variation within 

specific regions from a large population, looking for correlations between variants and 

phenotype in areas that might have been narrowed by prior linkage analysis, or even medical 

diagnostics.  We were faced with the practical matter of determining clone identity and quality 

in a very large collection of arrayed clones derived from a pooled oligonucleotide mixture.  Use 

of Next Generation Sequencing Technologies (NGST) for interrogating sequence for any of 

these tasks is hampered if libraries must be constructed independently from each sample or if 

different barcodes must be applied to each specimen prior to sequencing, particularly if 

specimen numbers run into many thousands. 

 

To circumvent such limitations, we have developed a novel multiplexing framework in which 

the identity of individual specimens is not encoded directly by an appended barcode sequence.  

Instead, specimen identities are encoded by positional information created by an optimized 

series of pooling schema.  In this manner, more than 100,000 different samples can be 

analyzed using only a few hundred barcodes (e.g. 384).   

 

Results 

 

Conceptual framework for the strategy 

 



Over the past several years, we have worked to produce collections of shRNAs and artificial 

microRNAs that correspond to all genes in the human, mouse, rat, and Arabidopsis genomes.  

Our approach relies on highly parallel oligonucleotide synthesis (Cleary et al., 2004) to 

generate mixtures of ~22,000-55,000 different species that are adapted and ligated into 

expression vectors. Previously, individual clones from this mixed library were picked, arrayed, 

and conventionally sequenced both to determine their identity and to verify their accuracy.  We 

sought to reduce the cost of this step by moving from capillary sequencing platforms to NGST.  

The essential barrier was that while NGSTs generate very large numbers of sequence reads, 

there was no straightforward way to link reads back to the sample, in this case the clone, from 

which it was derived.  Simple barcoding strategies could address this issue (Craig et al., 2008; 

Cronn et al., 2008), however, each clone would have to be individually coded, meaning that 

the number of barcoding oligos and the number of PCRs to generate sequencing templates 

would scale linearly with the number of distinct clones that we sought to analyze.   

 

As an alternative, we envisioned a multiplexing framework that relied on encoding the identity 

of the source of each sequence read within a pooling scheme rather than by directly barcoding 

individual samples.  In such a scheme, the number of pools is much smaller than the number 

of specimens. Thus, the number of barcodes required and the number of sequencing 

templates is greatly reduced.   

 

While we envisioned many simple pooling patterns, these proved insufficiently robust and 

uncertainties in linking clones to their source wells mounted quickly as the numbers of 

specimens increased.  For example, one simple approach viewed a clone collection as a 



simple matrix of rows and columns (Fig. 1).  Pooling all the clones in each row and pooling all 

clones in each column yielded pools equivalent to , where N is the number of clones (if 

the array was symmetrical).  A specific sequence would appear coupled to a particular row 

identifier and also with a particular column identifier.  This should point to a unique position in 

the clone array.  The approach breaks down immediately if not every sequence in the library is 

unique.  Of course, in our practical application, and in most uses of such a strategy, sequences 

appear multiple times. Therefore if such strategies were applied to multiplexed genotyping, 

individual alleles appearing many times within the overall population could not be correctly 

linked to their parent specimen.  We therefore needed a pooling pattern that would reveal 

unique specimen identities even in the face of redundancy.  We envisioned the possibility of 

integrating information from different pooling patterns to determine specimen identity.  While 

each individual pooling pattern might yield multiple solutions to the link between sequence and 

specimen source, the combination of all pooling patterns would provide sufficient constraints 

that only a single, high-confidence solution would emerge for the vast majority of samples.  

Many elements of this approach were reminiscent of seeking the solution to a Sudoku puzzle, 

which led us to dub this strategy “DNA Sudoku”. 

 

The key to the success of our strategy lay in optimizing the scheme of pooling patterns.  To 

maximize the information that we could encode within a series of pooling patterns, we based 

our strategy on the Chinese Remainder Theorem.  This approach is scalable, robust to both 

redundancy and sequence error (missing information), and is easy to debug.  The framework 

that we designed is firmly rooted in information-theoretic nonadaptive group testing 

methodology (reviewed in: Du and Hwang, 2000; Du and Hwang, 2006). This body of 



knowledge deals with efficient pooling designs that reduce the number of test procedures, 

while maintaining the identity of the source specimen. This framework has applications in 

various fields, including data storage (Kautz and Singleton, 1964) and sensor networks (Hong 

and Scaglione, 2004). It has also been used in the past for biological applications such as 

finding sequencing tagged sites (STS) in YAC libraries (Bruno et al., 1995).  While taking 

advantage of these theoretical tools, we were mindful of the physical overhead of creating 

pools and the costs that factor into pool analysis, namely next-gen sequencing.  We therefore 

established compromises that minimized cost and labor within the range of states and 

specimens that we sought to analyze, specifically multiple tens of thousands. 

 

In general, our scheme starts with N specimens that are arrayed in source wells, for instance, 

a series of 96 well plates. During the pooling step, aliquots of specimens are moved from the 

source wells to T destination wells, each of which accommodates a specific pool.  Each pool, 

rather than each specimen, is tagged with a unique barcode identifier.  The pools themselves 

are further mixed into one or a small number of samples that are then analyzed by NGST.  

Data from the sequencing run is fed to a decoder, which solves the DNA Sudoku and 

generates a list of individual specimens and their corresponding inferred sequences.   

 

The ability to achieve a solution in DNA Sudoku requires tracking specimens within the context 

of each pooling pattern and relating results generated by different pooling patterns.  Since 

specimens may give rise to many sequences (e.g. fragments of a genome) and since 

specimens may be non-uniform at any sequence position (e.g. mixed samples or 

heterozygosity), we refer to each specimen as having a state, which is inherent in its 



sequence.  The information content of each pooling pattern is strongly related to the diversity 

of states among the specimens.  Considering extreme examples, if states are identical among 

all specimens, then assignment of the common state is trivial.  Alternatively if only one 

specimen has a state that differs from the others, it is straightforward to track its context in the 

different pooling patterns and work back to identify the source that gave rise to that state; in 

this case even the simple row-column pooling pattern outlined above would be sufficient.  If 

states are very common, for example if the specimens contain an equal mixture of two states, 

then it is extremely difficult to link contextual information from each pooling pattern to a 

specimen source.   Thus, the strategy upon which we embarked works best for linking 

relatively rare, albeit redundant, states to their source specimens. This is well suited to our 

goal of identifying clones representing individual oligonucleotides from high complexity 

mixtures. This logic also dictates that our strategy would be suitable for identifying relatively 

rare polymorphisms within large populations.  

 

Mathematical analysis of potential approaches  

In essence, the number of specimens that share the same state determines the ease in which 

identity can be encoded within pooling schema.  As a refection of this, we denote redundant 

states with .  In a case with many states in the population,  enumerates the largest group 

of specimens with the same state. In cases in which an allele exists in binary states,  

denotes the number of carriers for the rarer of the variants. 

 

Overall, the lowest adverse impact of  is achieved by minimizing the number of times any 

two specimens reside in the same pool within a series of pooling patterns.  The pooling design 



can be represented by a pooling matrix M, which denotes the specimens residing in each pool.  

The entries of the matrix are binary, either 0 or 1; the rows represent pools, and the columns 

represent the specimens. Thus, M is a matrix. For example, if the first row is (1, 0, 1, 0, 

1...), it specifies that the 1st, 3rd, 5th, … specimens together occupy pool #1. The trivial case of 

one specimen, one barcode would yield the identity matrix .  and  are two column 

vectors in M, corresponding to the pools associated with the i-th and the j-th specimens;  

denotes the weight of , namely the number of pools in which a specimen is participating, 

essentially the number of 1’s in the vector.   is the dot-product of the two 

vectors. The dot product reveals the number of intersecting pools that hold two particular 

specimens whose behavior is represented by the vectors.   

 

The minimal weight, and the maximal intersection of the pooling matrix are critical 

properties of the pooling design, defining our ability to identify a specimen whose state 

appears multiple times within the collection of samples. In information theory, this property is 

called d-disjunction and refers to the ability of a pooling design to convey sufficient information 

to guarantee fully correct decoding despite the presence of up to d specimens with the same 

state. In their seminal paper, Kautz and Singleton (1964) proved that a matrix with: 

      (1) 

is d-disjunct. Our goal was to minimize the difference between  and d and when possible find 

a design were d> . This can be achieved by increasing the weight or decreasing . In 

practical terms, increasing the weight has operational costs, and we therefore focused on 



minimizing , namely increasing the orthogonality between the column vectors. We wished to 

accomplish this without adding more rows (pools) to the matrix, which would increase costs 

associated with pool preparation and sequencing. This task has been studied extensively in 

information theory (see for example: Kautz and Singelton, 1964; Johnson, 1962) and is related 

to the design of efficient error correcting codes. The difficulty of the task can be appreciated by 

considering , which denotes maximum orthogonality, and reducing the weight to the 

minimum for all columns, . Basic linear algebra dictates that M must be equivalent to the 

identity matrix , which implies the one-specimen one-barcode framework. The theory of 

group testing suggests highly efficient methods that compromise and  to yield , 

essentially giving logarithmic growth of the number of barcodes in comparison to the number of 

specimens (Du and Hwang, 2000; Du and Hwang, 2006;  Eppstein et al., 2007; Mezard et al., 

2007). 

  

Practical considerations for efficient pooling designs 

In practice, reducing the number of barcodes to the minimum is not the only requirement for 

effective multiplexing, since costs associated with labor and sequencing must also be 

considered. These are proportional to the weight, . The weight determines the number of 

times each specimen is pooled and is related to the number of robotic steps, and thus cost in 

time and reagents, for pooling. It is also preferable to have a weight-balanced pooling design, 

where all the specimens are sampled the same number of times. The more times each 

specimen is added to a pooled library, the more the library size increases. Overall, the required 

sequencing coverage does not depend on the number of pools, but only on the weight of the 



design, which is a major deviation from the theory of group testing, where the only cost is 

associated with the number of pools.  

 

Several additional biological constraints must also be taken into account, and these are related 

to the compression level , the number of specimens that are participating in the t-th pool. 

High compression levels can reduce the efficiency and the reliability of the test, for instance 

PCR on a pool with thousands of specimens is prone to representation biases, elevating 

likelihood that some specimens will not be sufficiently sampled in the sequencing step. 

Experience has highlighted sufficient sequencing coverage as a key to the success of our 

decoding strategy (see below).  

 

Using combinatorial arguments, we demonstrated that only pooling schemes with , can 

minimize sequencing and robotic costs while still maintaining decoding robustness (d-

disjunction) for clones with non unique states (see Supplementary Information). For 

comparison,  methods (Du and Hwang, 2006 p.58-59 and Eppstein et al., 2007) that 

confer similar decoding robustness typically have weights that are at least two-fold higher than 

the achievable weight of  methods. In addition, the compression level of the  

methods is greater, creating more complex pools and potentially compromising performance in 

a biological setting. Given our aim of genotyping thousands of specimens that can be non-

unique in one Illumina GAII run, we focused on constructing a  method.   

 

The multiplexing scheme 



In essence, we chose to treat a pooling rule as a modular equation. For instance, in (Fig. 2A) 

we illustrate pooling of 20 specimens according to the following two pooling rules: 

    Example 1  

 

For each pooling rule we create a destination plate, which accommodates the pools that are 

created based upon the rule. More generally, each pooling rule in has the following format: 

     (2) 

which brings aliquots of the  specimens to the rth-well in the corresponding 

destination plate, where , and x is called the pooling window. Let the pooling group be 

a set of all pools that are created according to a given x pooling window. Our general scheme 

employs a system of W pooling rules: 

     (3) 

The total number of the wells in the pooling groups gives the overall number of pools: 

.     (4) 

For instance, in our example above we see that T=5+8=13.  

 

This representation of the pooling scheme by the pooling matrix, M, which has the following 

characteristics. First, the rows of the matrix are partitioned to W regions, so that the first region 

has rows, the second region rows, with the pattern repeating until the number of pools is 

reached. In every region, the first row has a ‘1’ entry in the first column.  ‘1’ appears again after 



every increment that corresponds to the size of the corresponding pooling window; in the 

second row, the ‘1’ entry starts at the second column. In this way, we get a staircase pattern in 

every region (Fig. 2B). Our pooling design has a weight of W, since every specimen is 

sampled only once in every pooling window, and the matrix is weight-balanced. In addition, the 

total number of ‘1’ entries in every region of the matrix is the same. Thus, the sequencing 

capacity that is needed for each pooling group is the same.  

 

The crucial element in maximizing the efficiency of such a design is the choice of the pooling 

windows: . For this purpose, we turned to the Chinese Remainder Theorem 

(CRT), one of the most ancient and fundamental in number theory (Andrews, 1994; Ding et al., 

1996; Corman et al., 2001;). The CRT has been studied over the past few years as an 

encoding system for computer science applications (Goldreich et al., 2000; Guruswami et al., 

2000) and airborne radars (Stimson, 1998).  

 

Our pooling rules were designed to satisfy two basic requirements.  First, the size of every 

pooling window was chosen to be greater than the square root of the number of specimens.  

Second, every set of pooling intervals was designed, according to the CRT, be co-prime with 

respect to each other.  This means that no pooling windows can have common factor other 

than 1. For instance, (7,9,10) are co-prime, but (6,9) are not co-prime because 3 is a common 

factor. These two requirements are denoted by the following equations: 

    (5) 

    (6) 



When these two conditions are applied, The Chinese Remainder Theorem asserts that any 

two column vectors in the pooling matrix intersect at most 1 time. Thus, 

     (7) 

gives the minimal possible intersection for any pooling design of T<N and confers the highest 

likelihood of detecting the state of each specimen. From (1) and (8) the decoding robustness of 

our pooling design is maximal and equals: 

     (8) 

Example 1 follows these two requirements since (5,8) are co-prime, and , , 

and d=1, guaranteeing correct decoding when all states are unique 

 

Eq. 5 implies that the maximal compression level is: 

     (9)   

providing a very sparse compression that will never exceed 230 specimens for most situations 

(N<50,000). In addition, we can derive from Eq. 5 the total number of pools in our design: 

      (10) 

This construction is very close to the lower theoretical bound shown in Supplementary 

Information  (a formal proof will be given elsewhere). 

 

In our case, we chose to determine states by sequencing the output of one pooling rule in one 

lane of an Illumina GAII.  Thus, we were able to reuse the same set of 

barcodes/oligonucleotides in each pooling group, reducing the number of barcodes needed to 



around for small W. Tools to construct this pooling design can be found at 

http://hannonlab.cshl.edu/dna_sudoku/main.html. 

 

For the number of specimens that we envisioned (N<50,000), we analyzed the differences in 

number of barcodes required for our  scheme to the theoretically oriented 

method of Eppstein and colleagues (2007)  (Table 1). We chose Eppstein’s 

construction as a reference for several reasons. Their method has the maximal reduction in 

pool number and shows the best general performance among information theoretic methods. 

Moreover, their construction is also based on the Chinese Remainder Theorem, but without 

asserting that the number pooling windows be greater than the square root of the number of 

specimens. We assume that each pooling group is sequenced in one Illumina lane and that the 

number of barcodes needed is equivalent to the maximal number of pooling windows in each 

method.  

 

As expected Eppstein’s method performed better in reducing the number of pools. However, 

this came at the cost of heavily increasing the weight of the design, and thus sequencing and 

robotic costs. For example, our analysis of 40,000 specimens (see below) required less than 

one Illumina GAII flowcell (5 lanes), whereas Eppstein’s method would consume more than 

two full flow cells (17 lanes). The increase in the number of barcodes required was not 

dramatic, ~150 in the worst case. 

 

Solving the DNA Sudoku – General principles 



Solving the DNA Sudoku is a matter of determining which pooling patterns for a particular state 

coincide with the experimentally determined content of the pools, which we created.  This can 

be understood most easily by considering a case of binary states, wherein each specimen is 

either a WT or a rare mutant.  In this case, the task is to find the rare mutants. Considering the 

example in (Fig. 3A), the only data available to the decoder is the following pattern: well #1 in 

window #1 and well #6 in window #2 contain one or more specimens with the mutant state. In 

order to uncover the configuration that led to the observed pattern, the decoder eliminates 

specimens whose association with the mutant state would violate the observed pattern. This is 

achieved by scanning the pooling matrix along the pools (rows) that contain a mutant state and 

summing the columns of those rows, creating a histogram of specimen versus the number of 

pooling windows in which it appeared. If a specimen is mutant, the mutant state should appear 

in all windows harboring the specimen. Thus, any specimen with a level below w in the 

histogram is excluded. This histogram essentially displays the number of constraints fulfilled by 

associating the mutant state with each specimen. We refer to this overall procedure as pattern 

consistency decoding. 

 

Pattern consistency decoding definitively provides correct configuration when the number of 

mutant specimens, , is less than or equal to d (Du and Hwang, 2006). When  is higher 

than d (Fig. 3B) several configurations of specimen identity become consistent with the 

pattern. Hence, many specimens may falsely be reported as mutant. In practice, when the 

difference between and d is not high, pattern consistency decoding still reveals the correct 

specimen identities with high probability. 

 



Pattern consistency decoding for multiple states takes a similar approach. In each round the 

decoder takes one state and analyzes it as if it was the binary case, excluding its association 

with specimens that would contradict the observed pattern of that state. At the end of the 

round, the decoder adds the interrogated state to their list of possible states for specimens that 

were found to be consistent. At the end of a completely successful decoding, each specimen is 

associated with exactly one possible state. When of the interrogated state is too high, this 

state may appear as a false positive associated inappropriately with a number of specimens. 

Since their true state will also be associated with the same specimens, they are ultimately 

reported by the decoder as ambiguous.  

 

Simulated datasets: decoding clone collections and identifying variants within a population 

We tested the performance of DNA Sudoku with pattern consistency decoding for two 

simulated scenarios that matched our general interests.  In the first, we sought to identify and 

verify shRNA inserts harbored by a large number of bacterial clones.  In the second, we sought 

to identify carriers of a rare genetic disease amongst a large number of individuals.  In both 

cases, we limited the number of pooling windows to 8, so that sequencing could be carried out 

on one Illumina GAII flow cell.  

 

In the shRNA scenario, 40,320 simulated bacterial clones carried one of 12,000-17,000 

possible inserts, a number consistent with array-based oligonuclotide library synthesis (Cleary 

et al., 2004). Based upon prior experience, we estimated  to be no more than 40-50, even in 

the presence of biased cloning. Given these parameters, we simulated the effect of number of 

pooling windows (Fig. 4A-B) and the number of barcodes on the decoding performance (Fig. 



4C-D). Evaluating the probability of achieving unique assignments as a function of  (Fig. 

4A,C), we noted strong transitions when passed a certain threshold, depending upon the 

pooling design. We also determined the number of ambiguous assignments for different values 

of  (Fig. 4B,D). We used these measurements in relatively qualitative manner to understand 

the effect of adding pooling windows or increasing the number of barcodes used within our 

scheme. We found that each additional pooling window reduced the remaining uncertainty 

substantially, while adding barcodes had modest effects. These observations could be used to 

construct a rough heuristic to determine the number of barcodes and windows required to 

analyze a set of samples of a particular size and complexity. In comparison to the random k-

set design method suggested by Bruno and colleagues (1995), our number of unrelated 

specimens for different inputs is typically smaller by 25% (data not shown).  This supports the 

value of using their analytical equations as an upper bound for the optimization process 

instead of exhaustively simulating large numbers of instances. As a stringent test, we also 

validated the performance of the decoder when faced with an input set of 40,320 specimens 

distributed amongst only 1,000 different states, which corresponds to  (Supplemental 

Fig. 1).   

 

To estimate the value of DNA Sudoku for the analysis of rare variants in individuals, we 

presented the process with a population in which were segregating two prevalent Cystic 

Fibrosis risk alleles, CFTR mutations ΔF508 (MIM: 602421.0001) and W1282X (MIM: 

602421.0009). We set the carrier frequency of each allele according to levels found in a large 

cohort analyzed by the Israeli CF screening unit (Orgad et al. 2001), ~1.8%. This relatively 

high frequency of risk alleles challenges DNA Sudoku, testing the method against a difficult 



genetic screening problem. The simulation included 18,000 individuals that were either 

homozygous wild type or heterozygous carriers of risk alleles, translating to a  of around 

~320.  We simulated 7 pooling windows with ~384 barcodes. We randomly sampled the 

pooled data and created artificial sequence reads that recapitulate Illumina GAII sequencing 

error profiles, which are dominated by substitutions of C↔A and G↔T (Erlich et al., 2008). We 

used two methods to simulate sequencing errors. The first was based on an analysis of more 

than 30 million sequences of Phi-X from 3 different runs, and the other was based on a recent 

study of Druley et al. (2009) (human dataset, see methods).  

 

In the case of ΔF508, we simulated 4,000 reads for each pool which corresponds to 1.5 million 

reads per lane, a relatively low number for a GAII instrument. Before applying pattern 

consistency decoding, we filtered reads that did not perfectly match to the WT or risk allele. In 

both error profiles, Phi-X based and human based, the sensitivity was 100% and the specificity 

was 98.2%. The case of W1282X was more complex since pools that essentially contain no 

carriers may report a presence of a carrier due to sequencing error. In order to distinguish 

between sequencing error and the presence of a true carrier in the pool, we introduced a 

probabilistic threshold procedure to the pattern consistency decoder. This determined the 

expected ratio of carrier reads and the standard deviation for each pool if exactly one carrier 

were present in the pool. The threshold was set as three standard deviations below the 

expected value, and pools that passed the threshold were marked as containing at least one 

carrier. With the error profile based on Phi-X and 10,000 reads per pool (about 4 million per 

lane), we reached sensitivity of 100% and specificity of 98.3%. Setting the threshold to two 

standard deviations below the expected value reduced the sensitivity to 98.1% and did not 



affect the specificity, meaning that false positives are not due to the sequencing errors but are 

due instead to a limitation of the pooling procedure in dealing with large values. The 

simulation-based on error profiles derived from human data revealed similar picture. Sensitivity 

was 100% and specificity was 97.9% with ~10,000 valid reads per pool.  

 

We tested the effect of dramatically reducing sequence coverage using the human error 

profile. We sampled 500 reads per pool (~200,000 reads per lane), corresponding to only 5 

reads per chromosome in each pool. Under those conditions, the sensitivity dropped to 98.7% 

and the specificity to 94.4%, changing the threshold to one standard deviation restored the 

specificity to 98.9% but reduced the sensitivity to 73.8%. These results not only highlight the 

importance of sufficient sequencing coverage in DNA Sudoku, especially for medical genetics 

applications but also demonstrate the robustness of the procedure under non-ideal conditions. 

 

Using DNA Sudoku to decode physical clone collections 

We next tested the ability of the DNA Sudoku procedure to identify and validate shRNA clones 

derived from two different multiplexed oligonucleotide synthesis runs.  In the first case, we 

synthesized 17,500 oligonucleotides representing artificial microRNAs (amiRNAs) targeting 

Arabidopsis genes.  These were cloned via a two-step procedure into a pGreen derivative 

(unpublished).  40,320 bacterial colonies were picked into 96-well culture blocks using a 

Genetix QPIX (see methods).  The goal was to determine and verify both the passenger and 

the guide strand of each of the >40,000 clones.  

 



Creating the patterns of pooled samples is perhaps the most time consuming part of DNA 

Sudoku.  We therefore tuned our procedure for use on a Tecan liquid handling robot with a 

fixed-tip head that has 8 individually addressable pins.  Use of washable pins extends robotic 

run times but eliminates the otherwise substantial cost for disposable tips. This type of system 

is in relatively common usage, but the logic underlying the optimization is sufficiently flexible to 

allow adaptation to other robotic platforms.  

 

Considering practical constraints placed upon the procedure, it required the liquid handling 

robot approximately 45 minutes to move specimens from one source plate to one destination 

plate, with the majority of time being spent on tip washing.  Thus, each additional pooling 

window added substantially to the overall pooling operation.  At the present level of 

optimization, the creation of 5 pooling windows from ~40,000 clones requires approximately 7-

9 days, which we consider reasonable.  Most liquid handling stations can dispense into plates 

with up to 384 wells, placing this as an upper limit on the number of barcodes that could be 

conveniently used.  Considering these practical constraints, the simulation results, and the 

expected  level, we decided to use a 5-window combination of pooling intervals: 384, 383, 

381, 379, and 373, which provided a compromise between higher inference rates and tolerable 

robot time (see methods).  

 

We sequenced each pooling group in a separate lane of an Illumina GAII flow cell, obtaining a 

total of 25 million sequence reads. We parsed the sequence reads and annotated the 

barcodes. Several practical challenges were emerged from the sequencing data. First, the 

number of reads where non-uniformly distributed among the different lanes (Supplemental 



Fig. 2), with some lanes exceeding 10 million reads, and other reaching as low as 1 million 

reads, meaning 25 reads per specimen on average. A second challenge was low numbers of 

reads from specific pools, in particular the 13th pool and repeatedly every 48 pools thereafter in 

most of the pooling groups (Supplemental Fig. 3-7).  This reflected inefficiencies in 

preparation of the sequencing templates in those wells. A third practical challenge, that was 

not simulated previously, was low-level contamination by sequences that appeared in up to 

several hundred pools and thus introduced significant “noise” into the decoding process. 

Finally, we were faced with a large number of sequencing errors. We found that the library had 

in total more than 800,500 possible states (i.e distinct sequence reads), which exceeds by 20 

fold the number of sequenced used to program oligonucleotide synthesis (Supplemental Fig. 

8).  Since the whole procedure was deployed to distinguish clones with synthesis errors versus 

correct clones, we could not revert these sequence reads simply by aligning them to the 

design file.  

 

In the face of these challenges, the pattern consistency decoder performed remarkably well, 

providing 28,000 specimens with potential state calls, of which 20,500 specimens were 

unambiguous.  To test our performance, we compared the results of the decoding to a set of 

about 3000 specimens whose state we had determined by conventional sequencing. This 

revealed that 95% of the 20,500 assignments were correct.  

 

We were encouraged by the high decoding rate, but we sought approaches to minimize the 

number specimens with empty or ambiguous lists, without sacrificing veracity. Based upon 

experience, we developed a number of heuristics.  First, we increased tolerance for missing 



states when the sequencing depth for a particular pool was low and introduced penalties for 

states with low read numbers when sequencing depth was otherwise high.  We incorporated a 

priori knowledge of and penalized possible assignments that match to large numbers of 

specimens.   

 

Thus, instead of hard consistency requirement, we created a decoder that measures the 

discrepancy of the pattern from an ideal one, and registers that value. After evaluating all 

possible states, the decoder scans through specimens and assigns the state whose pattern 

exhibits the minimal discrepancy. In addition it reports an assignment quality score that is 

defined as the difference between the discrepancies of the best state to the second best state 

(see Supplementary Information for a detailed description of the decoder).  

 

Analyzing the distribution of assignment quality scores revealed a bimodal distribution (Fig. 

5A), and we tested whether this corresponded to mediocre versus high-quality decoding. We 

found an informative correlation between the quality scores to the correct decoding rates (Fig. 

5B) which resembled the bimodal distribution with strong transition around value of 5. We 

therefore filtered specimens with quality scores below 5 and compared the remaining 31,000 

specimens to the capillary reference. Correct decoding rates jumped to 98.5%. When we 

removed quality filtration the correct decoding rate dropped to 91% for all 40,320 specimens. 

Thus, the improvement we achieved using the minimal discrepancy decoder over the pattern 

consistency decoder was substantial. 

 



We tested DNA Sudoku and the minimal discrepancy decoder on a human shRNA library 

comprising 12,500 different fragments in 40,320 bacterial clones. We optimized the 

sequencing procedure to yield higher coverage (67 million reads total) and used longer 

barcodes of 10nt. Consistency checks on barcode representation revealed substantial 

background contamination in the Sudoku pools. Decoding the library with the minimal 

discrepancy decoder revealed an enhancement in the quality score distribution with a peak 

around value of 25 (Fig 5C). We filtered specimens with quality scores below 5, and retained 

36,000 out of the 40,320 clones. To evaluate decoding accuracy, we compared our 

assignments to conventional sequencing of 384 clones. In this case, the correct decoding rate 

was 98.2%. When we eliminated quality filtering, we had correct decoding rates of 97.3% for 

the 40,320 specimens. These results confirm that the quality scores are robust and have 

predictive value in identifying correct clones.  

 

 

Discussion 

 

The goal of this study was to transform a random NGST sequencing method into one that 

allowed an association of sequence reads with the specimens from which they were derived.  

For this purpose, we present a multiplexing framework that encodes the identity of specimens 

within a pattern that is established by a pooling procedure.  We show that we can effectively 

reduce the number of barcodes required and the experimental overhead of pool production to 

levels acceptable for the analysis of many tens of thousands of specimens.  Both the pooling 

and decoding methods can be tuned to address different specimen scenarios, different robotic 



pooling platforms, and different NGST technologies.  We have investigated the trade-offs in 

pooling strategies, and validated our procedure both via in silico simulation and through two 

real case studies. We find that our procedure is largely insensitive to the types of sequencing 

errors that plague NGST instruments but is vulnerable to low sequencing depth and 

biochemical failures in template preparation.   We developed an improved algorithm to address 

those issues and achieved high decoding rates of greater than 97% on average for all the 

clones, and robust quality score measurements that enable evaluation of the veracity of state 

assignments. 

 

Our framework raises the possibility of a new approach to the use of next generation 

sequencers for personal genomics and population genetics.  By analogy to the goal of the 

$1,000 genome (Mardis, 2006), it would be highly beneficial to reduce the cost of sequencing 

defined subsets of genes that are responsible for severe genetic diseases or for determining 

histocompatiblity.  Our strategy is presumably applicable to both of those examples since in 

severe genetic diseases one of the alleles (state) is generally very rare and the HLA locus is 

highly polymorphic.  However, these tasks present additional challenges, including inferring the 

state of a diploid genome and the difficulty of reconstructing complex haplotypes from short 

reads.  No doubt, future improvements in effective read lengths and in the bulk output of 

NGSTs will help us to address these challenges and further boost the power of the approaches 

we describe.  Specifically, such advances may pave the way to utilize our strategy for finding 

common genetic variations among large number of individuals.  While common genetic 

variations are not easily decodable, extended sequencing lengths will provide additional 

‘hitchhiker’ variations, which in total will provide enough polymorphism to detect the state of 



common variants in individual specimens. Recent studies have shown that autosomal 

heterozygosity is about 1/1000nt (Bentley et al., 2008), implying that 5000-10,000nt fragments 

may give enough polymorphism to detect common genetic variations in large samples using 

our strategy. Given the advent of what has been dubbed next-next generation sequencing 

technologies (Eid et al., 2008), this may be become possible in the near future. 
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Methods 

 

Comparing DNA Sudoku to Eppstein’s pooling method 

Eppstein’s pooling method construction was based on the python backtracking algorithm. Our 

method is based on C program that performs exhaustive search of co-prime numbers such 

that their sum is minimal and they are above a certain threshold. Running both programs took 

up to several seconds on a regular desktop computer. 

 

Simulation of decoding performance for the shRNA library 

W=3,4,5, and 6 correspond to the following pooling windows: (384,383,381), 

(384,383,381,379), (384,383,381,379,373), (384,383,381,379,371). BC=200, 300, and 384 

correspond to the following barcode combinations: (209, 205, 203, 202, 201), (307, 305, 303, 

302, 299), (384, 383, 381, 379, 373). We simulated each pooling design for 1000 random 

specimen arrays on CSHL’s High Performance Computing Cluster (HPCC). The system is an 

IBM E1350 blade-based cluster running Linux. It comprised 500 compute nodes, but our 

simulation used 100 nodes. Each compute node contained 2 dual-core Opteron 64 processors 

running at 2.0GHz, a local 73GB SFF SCSI disk, and memory from 2 to 8GB. 

 

Simulation of decoding performance for Cystic fibrosis-associated mutations 

The error profile of Illumina GAII using Phi-X data was constructed using three runs with 

Illumina standard base-calling versions >1.0. The sequence reads were aligned to the Phi-X 

reference genome (NC_001422.1) using BLAT (Kent, 2002) with tolerance of up to 5 

mismatches. The error profiles were calculated by enumerating the differences between the 



reference and the observed sequence read for each cycle. Ns were discarded. This procedure 

provided 36 4x4 confusion matrices. Each row was normalized to 1 to get probabilities. The 

error profile based on human data was set to 0.05% for all possible substitutions in the first 12 

cycles according to the data in Druley et al. (2009).  

The aforementioned noise profiles were added to the following sequences: delta508 - 

ATCATCTTTGGTGTTTCCTATGATGAA (WT), ATCATTGGTGTTTCCTATGATGAATAT (M). 

G1282X: TGGAGGAAAGCCTTTG(WT), TGAAGGAAAGCCTTTG(M).  

The pooling design used the following windows: 383 382 381 379 377 373 371. 

 

Arabidopsis chip construction 

A plasmid library representing 17,553 Arabidopsis synthetic miRNAs based on the miR-319a 

precursor were synthesized on an Agilent microarray. The DNA eluted and cloned to into a 

pGreen derivative (unpublished). 

 

GIPZ chip construction 

A plasmid library representing 12,784 Arabidopsis synthetic shRNAs based on the miR-30 

precursor were synthesized on an Agilent microarray. The DNA eluted and cloned to into a 

GIPZ derivative (Open Biosystems). 

 

Pooling bacterial clones  

Plasmid DNA was transformed into DH10B E.coli suspension and transformants were selected 

on a series of Q-tray 20x20cm petri dishes with LB + spectinomycin at 25ug/ml medium. 

40,320 bacterial colons were arrayed into 105 384-well SBS microplates (Genetix, Catalog 



number: x7007) using a Genetix QPix colony picker. A Tecan Genesis liquid handling robot 

carried the pooling using 8 fixed tips. 3ul of bacterial suspension was taken from each source 

well and delivered to the each destination well. This was followed by washing the tips by 

aspirating 30ul of 70% ethanol from two different ethanol baths and rinsing with milli-Q water. 

For destination plates we used 5 384-deep well plates (Nunc, Catalog Number: 269390). The 

pooling procedures were carried out at room temperature. 

The pooling design for Arabidopsis was 384, 383, 381, 379, 373. A calculation error caused us 

to use a window size of 381, which is not co-prime with 384.  However, we found that this 

would have an impact only if the number of specimens was above 48768 (least common 

multiple of 384 and 381).  

The pooling design for the human library was 384, 383, 379, 377, 373. In addition, we treated 

the clones as the first one is #9887, second is #9888 and so on. The reason behind that was to 

avoid a situation were the same specimen encounter the same barcode in all pooling windows. 

For instance, in the ordinary design specimens #1 pooled to the first well of each pooling plate, 

and marked with the barcode #1. In case of a failure in the synthesis process of this barcode 

specimen #1 will be lost. When labeling the specimens with larger numbers (e.g. starting with 

9887) they encounter different barcodes in the pools and the risk is averaged.  

 

Barcoding and Sequencing – Arabidopsis 

5ul of diluted bacterial culture was taken from each destination well for the PCR amplification. 

The PCR conditions were: 2ul of 10X KOD buffer, 0.8ul of 25mM MgSO4, 6ul of bacterial DNA, 

750nM of each primer, 2ul of 2mM dNTPs, 0.4ul of KOD hot start polymerase; in total 20ul. 

The reactions were cycled as follows: 95C – 5min (hot start), (95C – 35s /57C – 35s / 68C – 



20s) 22 cycles. We used 384 primer set for each destination plate. The primers were 

synthesized by Operon, and purchased in 4 96well deep plates wet (50uM x 200ul). The 

reverse primers had the following structure: 

5’-

CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGAT

CT********GCGACTCGGTATTTGGATGAATGAGTCG-3’, where the stars indicate 8nt 

barcodes that were constructed using a subset of Hamady et al. (2008) barcode set.  This 

subset was constructed by lexicographically sorting the set and choosing every fourth entry. 

The forward primer was: 

5’– 

AATGATACGGCGACCACCGAGATCTACACCTCGGACGCATATTACACATGTTCATACAC -

3’. 

5ul of each amplified product was taken, and products of the same pooling group were unified. 

We gel purified each pooling group of approximately 250bp. Each one of the pooling groups 

was sequenced on a distinct lane of Illumina GAII using the standard paired-end protocol of 36 

cycles.  Pooling window 384 was sequenced additional time as in the first time the number of 

reads was 300,000. We merged the two runs. 

 

Barcoding and Sequencing – Human GIPZ library 

We used a similar approach to the one indicated in the Arabidopsis set. PCR primers: 

Forward:5’–ATCGTTGCCTGCACATCTTGGAAAC-3’.Reverse: 

CGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT**********ACATCTGTGGCTTCACTA

,where the stars indicates 10nt barcodes with 5nt Hamming distance (unpublished).  



 

Decoding 

Prototype programs of the decoding procedures were written in Perl and used a mySQL 

database. The pattern consistency decoder typically took 5-10min on a desktop computer 

(CPU: QX6850, 3Gb RAM, Linux Ubuntu). However, the minimal discrepancy decoder was 

very demanding and took ~20hours on average. We expect that future implementation 

improvements will reduce decoding time. All programs are available for academic and non-

profit usage by request from the authors. 

 

In order to benchmark the decoding results of the Arabidopsis library, we capillary sequenced 

the specimens of the 1st, 11th, … plates, up to the 91st plate. Then, we filtered sequences that 

did not contain the sequences flanked HindIII and EcoRI restriction sites. In total we left with 

sequences from 2760 specimens. 

More than 4nt mismatches between the results of the decoder to the capillary sequences were 

considered as decoding errors and 4nt and fewer mismatches were considered as sequencing 

errors on one (or both) of the sequencers. Only 4% of the correct decoding result had 

sequencing errors. We probed the cause of the sequencing errors by comparing the decoder 

sequences and the capillary sequences to the reference design. Remarkably, we found that in 

70% of cases, the sequence reported by the decoder appeared in reference design and in only 

25% of the cases was the capillary sequence in the design reference. This indicates that most 

of the sequencing errors stem from the capillary sequencer and not from the decoder.  

 



For benchmarking the decoding results of the human library, we sequenced an entire 384 plate 

using a capillary platform (Agencourt) and filtered reads that did not match to the constant loop 

region of the shRNA design. 

 

 



Figure legends 

 

Figure 1. The problem of non-unique genotypes in simple row/column strategies. (A-

B) Pooling and arraying of 20 specimens. Letters indicate pools of rows and Roman numerals 

indicate pools of columns. (A) The mutant state (red) is unique and appears only in specimen 

#6 (left). After sequencing the pools (right), this genotype is found in pool II and B, a pattern 

which can only be associated with specimen #6, demonstrating successful decoding. (B) The 

mutant state appears in #6 and #20.  After decoding there is an ambiguity of whether the 

mutant state is associated with specimens #6 and #20, or #8 and #18, or #6, #8, #18, and #20. 

 

Figure 2. An example of pooling design. (A) The steps involved in pooling 20 specimens 

with two pooling patterns: - on the left, and  - on the right. Note that 

each pattern corresponds to a pooling group and to a set of destination wells. For simplicity, 

the destination wells are labeled 1-5, and 1-8 instead of 0-4 and 0-7. In this example, we 

choose specimen #6 to be mutant (red, green=wildtype) among the 20 specimens. (B) The 

corresponding pooling matrix. The matrix is 13x20 and partitioned into two regions (broken 

line) that correspond to the two pooling patterns. The staircase pattern in each region 

(highlighted in gray) is typically created in our pooling scheme. The weight of the matrix is 2, 

the maximal intersection between each set of two column vectors is 1, and the maximal 

compression rate is 4. 

 

Figure 3. Pattern consistency decoder. (A) Successful decoding. Specimen #6 is the 

only mutant (red) in the library (upper). After pooling and sequencing, the only data available 



for the decoder is the following pattern: mutant is in the 1st pool of the first pooling window and 

in the 6th pool of the second pooling window (middle - see corresponding red rows in the 

matrix). Summing along the columns of the pattern (down) creates a histogram that represents 

the number of windows in which a specimen was found. Notice that the scores of the 

histograms range from 0 to the weight of the matrix. The pattern consistency decoder asserts 

that only specimens that appeared in all windows will assigned to the mutant state. Since only 

specimen #6 has a score of 2 in the histogram meaning it appeared in all possible windows, it 

is associated with the mutant state, and the decoder reports the correct result. (B) Failure in 

the decoding. This pooling matrix has decoding robustness of , and the correct decoding 

of .  Thus, in the example, correct decoding is not guaranteed. Specimen #6 and #8 are 

mutants (upper), and the pattern that the decoder encounters is indicated in the matrix 

(middle). Consequently, associating specimen #16 with the mutant state is consistent, and it 

gets score of 2 in the histogram, and reported as mutant. 

 

Figure 4. Simulations of decoder performance in different CRT pooling designs with 

40,320 specimens. (A-B) The effect of increasing the weight with 384 barcodes. (C-D) The 

effect of increasing the number of barcodes with 5 pooling windows.  (A,C) Probability of 

correct decoding as function of  with different pooling designs. Gray line – 99% (B,D) The 

expected number of ambiguous specimens due to decoding errors as function of  and 

different pooling designs.  

 

Figure 5. Performance of the minimal discrepancy decoder. (A) The distribution of 

quality scores for the Arabidopsis library is bimodal with transition around a quality score of 5 



(red line). We speculate that this corresponds to two decoding regimes – noisy on the left and 

error-free on the right. (B) Analyzing the correlation between filtering above different quality 

scores and the correct decoding rate. The size of the bubbles corresponds to the number of 

specimens passing the threshold. The increase in the correct decoding rate with the threshold 

of the quality validates the predictive value of the quality scores. The strong drop in the correct 

decoding rates below quality score of 5 (red bubble) confirms our speculations about two 

decoding conditions. (C) The quality score distribution of the human library. The noisy area, left 

of a quality score of 5, contains fewer specimens than observed in the Arabidopsis library. The 

shift of the distribution to the right suggests better decoding performance presumably due to 

higher sequencing depth. After filtering specimens with quality score above 5, the correct 

decoding rate was estimated to be 98.2% for 36,000 specimens, and indicates the robustness 

of the quality score. Decoding all specimens regardless the quality score revealed a correct 

decoding rate of 97.3%. 

 
 
 
 



Supplementary Figure Legends 

 

Supplementary Figure 1  Simulating the expected decoding results of shRNA library of 

42,320 specimens with 1000 possible fragments and different pooling designs. (A-B) The 

uncertainty of each specimen is log2 cardinality of the list of possible specimens after 

decoding, and here reported the sum of all specimens. (A) The total uncertainty as function of 

increasing the number of windows with ~384 barcodes. (B) The total uncertainty as function of 

increasing the number of barcodes with weight of 5. 

Supplementary Figure 2  Number of sequence reads in each pooling window. 

Supplementary Figures 3-7 The abundance of the barcodes in different pooling windows. 

The barcode annotation was based on exact matches to the reference design (see methods). 

The abundance was calculated after filtering reads with Ns in their state region. Barcodes 

outside the range of the pooling window were filtered in later stage. 

Supplementary Figure 3. Barcode abundance in the 384 pooling window.  

Supplementary Figure 4. Barcode abundance in the 383 pooling window.  

Supplementary Figure 5. Barcode abundance in the 381 pooling window.  

Supplementary Figure 6. Barcode abundance in the 379 pooling window.  

Supplementary Figure 7. Barcode abundance in the 373 pooling window.  

Supplementary Figures 8  The prevalence of states as number of windows. Most of the 

states were detected only in one window, indicating random sequencing error. Only a small 

fraction of states was detected in all 5 windows. 

 

 



 Table 1: 

Eppstein DNA Sudoku 
#Specimens 

Decoding 
robustness (d) Pools Weight Barcodes Pools Weight Barcodes 

3 149 10 29 293 4 77 
4 237 12 37 370 5 77 5,000 
5 336 15 47 449 6 79 
3 209 12 37 811 4 205 
4 335 14 47 1020 5 209 40,000 
5 472 17 59 1231 6 211 

The difference in pools, weight and maximal number of barcodes in a comparison between the 

best known information theoretic method (Eppstein, 2007) and DNA Sudoku. 
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Supplementary Information 
 
Pooling matrices with minimal weight are  
 
We will first define the decoding robustness as a matrix property called d-disjunct. Then, we 
will find the minimal weight of a d-disjunction matrix, and show that it asserts maximal 
intersection . This will lead us to build a theorem that the number of pools should be 

higher than , when using the minimal weight. Throughout the proof we will follow some of 
the results of Kautz and Singleton (1964 - see reference in the main body). 
 
 
Consider a TxN binary matrix M with constant weight w (w>0), and a maximal dot-
product between the column vectors.  
 
Definition 1: M is called d-disjunct if and only if the Boolean sum of up to d column vectors of 
the matrix does not include any other column vector than those used to form the sum.  
d-disjunction confers that any d specimens with the same state can be uniquely decoded, and 
that there is a tractable decoding algorithm. 
 
Definition 2: M is called reasonable if it does not contain a row with only a single ‘1’ entry. 
Clearly, if a design includes pools of single specimens, it is more cost effective to genotype 
those specimens without pooling. Thus, we are only interested in reasonable designs. 
 
Lemma 1: The minimal weight of a reasonable d-disjunct matrix is:  
 
Proof: assume , and pick any C(i) column vector. According to definition 2, every ‘1’ 
entry in C(i) intersects with at least one column vector. Thus, there are at most w column 
vectors that intersect with C(i). The Boolean sum of those w column vectors includes C(i) and 
the matrix is not w-disjunct. According to definition 1, it can not be d-disjunct, and . The 
existence d-disjunct matrices with  was proved by Kautz and Singleton.                      
 
Definition 3: M is called minimal-weight d-disjunct in case .  
 
Lemma 2: If M is a minimal-weight d-disjunct then . 
 
Proof: Assume  occurs between the C(i) and C(j). According to definition 2, the Boolean 
sum that includes C(i) is composed by at most  column vectors. However, the 
Boolean sum of any column vectors does not include C(i). Thus, , and according 
to definition 2, . Thus, .                 
 
Lemma 3: The number of columns of M is bounded by: 
 



       

 
Proof: See Kautz and Singleton.               
 
 
Theorem: For any minimal-weight d-disjunct matrix the number of rows is  
 
Proof: plug lemma 2 to lemma 3: 

 

 
=>       
Then:                     

 
 
 

On the other hand, we conjecture that any d-disjunct matrix with  has a 
weight of at least: , which is bigger by a factor from the minimal 
weight. While we found several examples in the literature, proving this conjecture is a 
subject for a future work.   
 
 
 
Mathematical formulation of the decoding procedure 

 

Pattern Consistency Decoder: 

Let be the decoding results with 0/1 entries. In case of binary states  is a vector of N 

entries (1-Mutant), and an SxN matrix in the multi-state case where S is the number of states. 

The pattern consistency decoding is given by the following logical condition:  

 



           (1) 

 

where Y is binary SxT matrix, and 1’ in the (i,j) entry denotes that the i-th state found in j-th 

pool and vice-versa for 0’. The matrix multiplication between Y and M gives the number of 

constraints each specimen satisfied. The decoder reports only columns of  that contain 

exactly one 1’ entry. If there is more than one 1’ entry, then the column is reported as 

ambiguous, and if it is an all-zeros column, it is reported as empty. 

We can relax the consistency requirement to tolerate technical failures by: 

           (2) 

where , but with the price of reduced ability to deal with larger , and losing 

specificity. 

 

Minimal Discrepancy Decoder: 

Let  be the number of reads of the i-th state in the j-th pool,  be the total number of 

reads in the j-th pool, and  denotes the discrepancy of the j-th pool regarding the i-th state: 

 

           (3) 

In order to tolerate zero reads of a state in a given pool, we define the discrepancy of this case 

as , where  is a tunable parameter. Using an outlier detector, the decoder 

finds pools with extremely low number of reads (relatively to the other pools in the lane) and 



treats them as technical failures with , where  is a tunable parameter and 

c is the size of the corresponding pooling window. Testing few numbers of ,  we found that 

and has a moderate positive impact on the results, but further study is needed to 

analyze their effect. 

 

Combining the discrepancies to form the assignment of each specimen is given by: 

               (4) 

 

Since this procedure requires tedious matrix multiplication, we calculated only entries that 

correspond to specimens that during the relaxed pattern consistency algorithm violates only up 

to two constraints: . 

In order to penalize assignments that match large number of specimens in the minimal 

discrepancy decoder, we created a simple heuristic based on data from the relaxed pattern 

consistency decoder. For each state/specimen in the minimal discrepancy decoder, we identify 

the corresponding entry in YM matrix of the relaxed pattern consistency decoder, and 

enumerate the number of entries with the same level along the row. The logarithm of this 

number is added to the state/specimen of the minimal discrepancy decoder. 

At the final step of the minimal discrepancy decoding, we find the minimal entry for each 

column and report its corresponding state. The quality value is calculated by taking the 

difference between the second minimal entry and the minimal entry. 
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