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Abstract— Carrier screens are widely used in medical genet-
ics to prevent rare genetic disorders. Current detection methods
are based on serial processing which is slow and expensive.
Here, we discuss a highly efficient compressed sensing approach
for ultra-high throughput carrier screens, and highlight both
similarities and unique features of our setting compared to the
standard compressed sensing framework. Using simulations, we
demonstrate the power of compressed carrier screens in a real
scenario - finding carriers for rare genetic diseases in Ashkenazi
Jews, a population that has well established wide-scale carrier
screen programs. We also compare the decoding performance
of two typical reconstruction approaches in compressed sensing
- GPSR and Belief Propagation. Our results show that Belief
Propagation confers better decoding performance in the current
application.

I. INTRODUCTION

In the past three decades extensive efforts were made
to map severe genetic disorders to specific DNA sequence
variations. Remarkably, large number of these disorders, such
as Cystic Fibrosis and Sickle Cell Anemia, are caused by
subtle sequence changes; even a single nucleotide substitu-
tion in a specific location can entirely disrupt the activity
of an essential gene. However, many traits are recessive,
meaning that the nonfunctionality of one allele copy can be
compensated by the normal activity of the other copy. In
those cases, the genetic disorder appears only in individuals
that carry two non-functional alleles. Thus, regarding a
recessive disorder, there are three groups of individuals: (a)
normal individuals - with two functional alleles (b) carriers
- individuals with only one functional allele (c) affected
- individuals with two non-functional alleles. Notice that
there are no phenotypic differences between a carrier and a
normal individual in respect to the disease’s trait. However, a
breeding between two carriers may lead to devastating results
as explained by Mendelian genetics (Table I): The breed
of two normal individuals always gives rise to a normal
offspring. The breed of a normal and a carrier has 50%
chance of giving a normal offspring and 50% chance of
giving a carrier, but no chance for an affected offspring.
When two carriers breed, they have 25% chance of having an
affected offspring for each carriage, 50% of having a carrier,
and 25% of having a normal offspring (we do not consider
breeds with an affected individual, since affected are usually
not reproductive). This picture reveals that only families with
two parental carriers are at risk for having an affected sibling,
and that other breading combinations are safe.

Since there is no overt indication for being a carrier, and
most carriers are born to healthy families, revealing that an
offspring is affected is a shocking experience. Therefore,
many countries employ wide-scale carrier screen programs,

Offsprings
Breed: Normal Carrier Affected

Normal x Normal 100% 0% 0%
Normal x Carrier 50% 50% 0%
Carrier x Carrier 25% 50% 25%

TABLE I: Breeding outcomes as a function of parental
genotype

in which individuals are genotyped for a panel of risk genes
that are prevalent in the their population. The common prac-
tice is to offer the screen to the entire population regardless of
their familial history, either before mate selection (premarital
screens) to reduce the risk of carrier-carrier breeds, or
prenatally in order to provide a reproductive choice.

The most common genotyping method is sequencing the
genomic region that harbors the mutation site, and analyzing
whether the DNA sequence is wild-type (WT) or carries
a mutation. This approach gained popularity due to its
high accuracy (sensitivity and specificity), applicability to
a wide variety of genetic disorders, and technical simplicity.
However, the current DNA sequencing platforms utilized in
medical diagnosis provide only serial processing of a single
specimen/region combination at a time. Therefore, while the
genetic basis of many disorders is known, the cumbersome
costs of large genotyping panels hinder applying this knowl-
edge routinely in the clinic.

Recently, a new class of DNA sequencing methods,
dubbed next-generation sequencing technologies (NGST) has
emerged, revolutionizing molecular biology and genomics
(reviewed in [1]–[3]). These sequencers process short DNA
fragments in parallel and provide millions of sequence reads
in a single batch, each of which corresponds to a DNA
molecule within the sample. While there are several types of
NGST platforms and different sets of sequencing reactions,
all platforms achieve parallelization using a common concept
of immobilizing the DNA fragments to a surface, so that
each fragment occupies a distinct spatial position. When
the sequencing reagents are applied to the surface, they
generate optical signals according to the DNA sequence,
which are then captured by a microscope and processed.
Since the fragments are immobilized, successive signals
from the same spatial location convey the DNA sequence
of the corresponding fragment (Fig. 1). Using this approach
millions of DNA fragments can be simultaneously sequenced
to lengths of tens to hundreds of nucleotides.

It is clear that harnessing next generation sequencers to
carrier screens will dramatically increase its utility. The main
challenge is how to fully exploit the wide capacity of the
sequencers. Dedicating one sequencing batch to genotype



Fig. 1: Illustration of a sequencing round in a next generation
platform. The rods represent immobilized DNA fragments.
Optical signals (arrows) that correspond to the DNA se-
quences are captured by the sequencer

dozens of loci in a single individual does not realize even
a small fraction of the sequencing power, and in fact, it is
even less cost-effective than the serial approach. Therefore,
multiplexing large number of specimens in a single batch is
essential. The problem is that when specimens are simply
pooled and sequenced together the sequence reads reflect
only the allele frequencies of the specimens in the pools, and
do not provide any information about the particular status of
each specimen.

One intriguing solution for the multiplexing task is to
employ combinatorial pooling before sequencing - pool the
specimens according to a designated pattern that on one hand
exploits the sequencing capacity, and on the other enables
faithful reconstruction of the individuals’ genotypes. Group
testing (GT ) and compressed sensing (CS ) offer a rich
framework for that approach, and earlier this year several
groups have independently proposed multiplexing strategies
based on those mathematical concepts (summarized in Ta-
ble II). While these groups considered different biological
scenarios, and accordingly different pooling designs and
reconstruction algorithms, they reached the same conclusion
- identifying rare genetic variations can be obtained by
sequencing only small number of pools.

Carrier screen is also a task of finding rare genetic
variations, and can be achieved by employing similar ideas.
Here, we show how CS framework can be used for ultra-
high throughout carrier screens. We focus on real problem
- finding carriers of genetic diseases that are prevalent in
Ashkenazi Jews. In section II, we map the problem to CS
framework, and in section III we show its rigor by extensive
simulations for two diseases that are prevalent in Ashkenazi
Jews.

II. CARRIER SCREEN USING COMPRESSED SENSING

In CS [8], [9] one wishes to efficiently reconstruct an
unknown vector of values x = (x1, ..., xN ), assuming that
x is sparse. It has been shown that x can be reconstructed

using k � N basic operations termed measurements, where
a measurement is simply the output y of the dot-product of
the (unknown vector) x with a known measurement vector
m, y = m · x. By using the output of such k measurements
and their corresponding m’s, it is possible to reconstruct the
original sparse vector x.

Multiplexed carrier screen can be mapped into a CS setting
as follows: The entry xi in x = (x1, ..., xN ) is either 0,
or 1, and specifies the number of non-functional alleles of
the i’th individual. We assume that individuals that carry 2
non-functional alleles are affected by a severe disorder and
never participate in the screen. Since we are interested in
rare genetic variations, x is indeed sparse as most individuals
have zero copies of the non-functional allele. As for the
measurements, a certain pool of individuals is chosen, and
equal amounts of their DNA is mixed and then sequenced
using NGST. Mathematically this simply means that an entry
in the measurement vector m is 1 if the specific individual
was part of the pool, and 0 otherwise. Our measurement
y, however, is not a linear projection of m · x. Instead, the
sequencing results are given by the ratio of z, the number
of reads corresponding to the non-functional allele, to r,
the total number of reads from the specific site. Hence y
in our case is an estimation of the frequency of the non-
functional allele in a pool, obtained through a binomial
sampling process, and given by the following equation:

Pr(y =
z

r
) =

(
r

z

)
pz(1− p)r−z (1)

where

p =
m · x

2
∑N
i=1mi

is the proportion of reads showing the non-functional allele,
and for large number of sequence reads y ∼= p.

We employ k measurements (pools), hence, the different
measurement vectors are the rows of the measurement matrix
Mk×N , and their results are the entries of y. Although this
mapping is rather straightforward, applying CS to the prob-
lem of detecting carriers has some unique characteristics:

‘On a budget’ pooling design: The central goal of CS
is reducing k, the number of measurements, to the required
minimum that enables faithful reconstruction of the input
signal. This is also a goal of compressed carrier screen
since sequencing each pool is rather expensive. However,
the pooling procedure itself, namely mixing the specimens
prior to their sequencing, has its costs and limitations. Let w
be the weight of the design - the column with the maximal
number of 1’s in M. The weight determines the maximal
number of times a specimen is sampled in the pooling.
Pooling designs with heavy weight require laborious work
of technicians and liquid handling robots and consume more
specimen material, which may be very limited. Moreover,
pools that are composed of a large number of specimens are
prone to non-uniform DNA amplification during the PCR
step. Therefore, one unique feature of our compressed carrier
screen is to find an ‘on a budget’ pooling design, such that M



Paper Type of pooling
design

Pooling design Number of pools Light Design Decoding Remarks

[4] Deterministic Logarithmic
signature

O(3dlog3Ne) No unspecified Designated for
singletons detection

Extended Golay
Code

24dN/759e Yes

[5] Deterministic Chinese Remainder
Theorem

Θ(w
√
N +

1
2w

2 log(w))
Yes Minimal

Discrepancy
Validated in a real
experiment.

[6] Stochastic Dense Bernoulli
matrix p = 1/2

O(klogN) No GPSR Shows rare
homozygous
detection

Sparse Bernoulli
matrix p = 1/

√
N

O(k
√
N) Yes

[7] Deterministic Chinese Remainder
Theorem

Θ(w
√
N +

1
2w

2 log(w))
Yes Belief Propagation

TABLE II: Summary of current GT and CS multiplexing schemes for NGST

will be sparse as possible, while also keeping the number of
pools as low as possible. We refer to such pooling schemes
as ’light’ designs.

Apart from these “pre-sequencing” considerations, a
sparse pooling design increases the reliability of sequencing
results by reducing sampling noise, which is reminiscent of
the dilution effect in GT [10], [11]. The total number of
reads per pool, r, is determined by the efficiency of the
sequencing batch, independently of the number of specimens
in the pool. Thus, increasing the number of specimens in a
pool reduces the number of reads which originate from each
individual and may affect the reliability of y.

Not all pools were created equal: The traditional CS
framework considers a measurement as a linear projection of
the aggregated data points in the presence of additive white
Gaussian noise. As we indicated in Eq. (1), the sequence
reads reflect only relative frequencies of alleles in the pool,
and not the absolute number of non-functional alleles. For
example, if one carrier and 99 normal specimens are mixed in
equal amounts, then the sequence reads of the non-functional
allele will follow a binomial distribution with p = 1/200 and r
total number of reads. The extent of variation in the number
of non-functional allele reads determines the measurement’s
reliability, as larger number of reads elevates the accuracy
in estimating the absolute number of carriers in a pool.
However, the variance is also determined by p, the relative
number of carriers in the pool, meaning that this type of
noise is not additive, but depends on the pool’s content.
Since pools have different number of sequence reads and
different number of carriers, it would be beneficial to have a
reconstruction algorithm that weigh measurements according
to their reliability, and a pooling design that increases the
sequencing reliability.

Pooling imperfections: A third feature of this prob-
lem are pooling imperfections that introduce noise to the
measurement matrix M, as opposed to a ’standard’ CS
application in which M is known exactly. For example, it
may happen that unequal amount of DNA are taken from
each individual, or that small amounts of material from one
pool contaminate the following pool to be sequenced, etc.
Such problems introduce multiplicative noise into M which
may hinder accurate reconstruction [12].

Signal domain: The last unique feature of this problem
is related to the fact that in traditional CS the transmitted
vector x is assumed to belong to RN , while in our task,
x ∈ {0, 1}N . This property implies that additional post-
processing quantization step is required when one employs
an off the shelf CS reconstruction algorithm. To the best of
our knowledge systematic analysis of reconstructing binary
input vectors by traditional CS reconstructing methods, such
as convex relaxation is yet to be studied.

III. CASE STUDY - A CARRIER SCREEN FOR PREVALENT
GENETIC DISORDERS IN ASHKENAZI JEWS

In order to evaluate the compressed genotyping methodol-
ogy, we performed simulations of carrier screens for preva-
lent genetic disorders in Ashkenazi Jews. This community
has been a subject of extensive genetic studies, and about a
dozen severe Mendelian diseases were found in relatively
high prevalence (see Table III). Carrier screen programs
designated for Ashkenazi Jews are widely employed; the
Israeli Ministry of Health sponsors a national screening pro-
gram for Tay-Sachs (TS), Cystic Fibrosis (CF), and Familial
Dysautonomia (FD) [19], and similar programs exists for
the communities abroad [20]. Screening the bulk population
is highly apt to our compressed sensing carrier screen.
First, large number of specimens increases the benefit-cost
ratio of the screen, and justifies the pooling step. Second,
screening large number of specimens is less prone to random
fluctuations in the carrier rates. We particularly focused on
the leading mutations of two genetic diseases, Tay-Sachs and

Disorder Main clinical features Carrier
Rate(%)

Reference

Tay-Sachs Neurodegenerative disorder.
Fatal by age of 2 or 3 years

1:25 [13]

Cystic
Fibrosis

Pulmonary complications.
Median age of death is 30
years

1:30 [14]

Familial
Dysautonomia

Severe nervous system
impairment. Median age of
death is 30 years

1:30 [15]

Canavan Mental retardation 1:40 [16]
Usher
Syndrome

Deaf blindness 1:40 [17]

Bloom Early cancer onset. Sterility 1:102 [18]

TABLE III: Examples of Typical Genetic Disorders in
Ashkenazi Jews



(a) Bloom Syndrome (b) Tay-Sachs

Fig. 2: Evaluating Nmax for GPSR (green) and BP (red)

Bloom Syndrome, which are found in the two extremes of
the disorders in terms of their relative carrier rate in the
Ashkenazi Jews population.

In Tay-Sachs, the leading mutation is a 4 base pairs
(bp) deletion in the HEXA gene (MIM: 606869.1), and
the estimated carrier rate for that mutation is 2% [13]; In
Bloom syndrome, the leading mutation is a 6bp deletion
and 7bp insertion in RECQL3 (MIM: 604610.1), and the
estimated carrier rate for that mutation is 1% [18]. The
genetic alterations in these two cases are quite major, and
affect several nucleotides in the sequence. Therefore, one
can unambiguously determine whether a sequence read cor-
responds to the WT allele or to the non functional one.
Accordingly, we did not introduce sequencing errors to the
simulations.

For the pooling design, we used the light Chinese design,
presented in [7]. In brief, this design allows the user to
specify the required pooling weight w, i.e., the number of
non-zero elements in M’s columns. Hence it is capable of
producing very sparse designs, conferring the ‘on a budget’
requirement. The number of pools in the light Chinese design
are roughly w

√
N , and we tested 4 ≤ w ≤ 7 for Bloom

syndrome, and 4 ≤ w ≤ 9 for Tay-Sachs, which mostly fits
a single batch of Illumina GAII, the leading NGST platform.

We evaluated two reconstruction approaches: An adaption
of Gradient Projection for Sparse Reconstruction (GPSR)
[21] to compressed genotyping that was presented in [6],
and an improvement of Belief Propagation (BP)-based solver
that was presented in [7] (see Appendix for details about
the improvements). GPSR and BP represent two common
classes of reconstruction approaches in CS . The former
algorithm is based on a top-down approach, a minimization
of the `2 differences between the reconstructed signal and
the observed results with a global cost function that evalu-
ates the solution’s sparsity by measuring its `1 norm. This
approach has been widely employed in other CS solvers,
and in machine learning for spare model selection [22].
The latter algorithm, BP, achieves sparsity by a bottom-up
approach of rewarding local consistencies in the genotype
assignments that inherently exclude non-sparse solutions. BP

as a CS solving strategy has gained popularity in the past few
years, and several studies demonstrated its rigor [23]–[25].
A noticeable difference between GPSR and BP in solving
compressed carrier screen is that GPSR reports x ∈ RN ,
and requires a rounding procedure to obtain the final results,
whereas BP directly computes the marginals for x ∈ {0, 1}N

We measured the success rate of the solvers by eval-
uating their Nmax, the largest number of specimens that
can be reconstructed with 100% accuracy in 95% of the
simulations’ instances. We have previously found that Nmax
tightly indicates the decoding boundary, after which a strong
phase transition occurs and very low decoding accuracies
are observed [6]. In order to find Nmax, we simulated
carrier screens with 1, 000 to 19, 000 specimens in steps of
500 and 1, 000 specimens for the range 1, 000 − 10, 000,
and 10, 000 − 19, 000 correspondingly. For each number of
specimens, we generated 50 independent inputs of carrier
and non-carrier according to the expected frequency of each
disorder. We assumed that the sequencer reports 5,000 reads
for each pool.

Remarkably, our results indicate that one can obtain per-
fect decoding accuracy while providing a significant saving
in sequencing costs. For example, accurate reconstruction
was achieved even with a pool/specimen ratio as low as
6.5% for carrier screen of a very rare disorder (Bloom) and
12.5% for a more prevalent one (Tay-Sachs), and very sparse
design with relatively low weights (Fig. 2). We also found
that in our setting the performance of BP outperformed the
performance of GPSR. In the Bloom syndrome simulations,
regardless of the weight, BP decoded large number of
specimens by about 20% − 25% compared to GPSR. In
the Tay-Sachs simulations, BP yields the same Nmax as
for some of the weights, and achieve higher Nmax for the
others. These findings are in agreement with other studies
that show a decoding advantage when using BP for sparse
CS problems (Dror Baron - personal communication). We
speculate that the performance advantage of BP, at least in
our case, is attributed to its ability to find the assignment
directly without any post-processing rounding step that may
introduce errors. Another possibility for the advantage of

http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=606869&a=606869_AllelicVariant0001
http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=604610&a=604610_AllelicVariant0001


BP is its inherent mechanism that gives lower weights to
less reliable pools with large number of carriers. It is thus
possible that running GPSR with a modified cost function
taking into account these reliabilities will produce improved
results. In addition, we would like to stress the point that
in other pooling settings, BP may exhibit lower performance
levels, since the light Chinese design ensures that no short
cycles occurs in the corresponding factor graph. With respect
to the running times, GPSR has a significant advantage over
over BP. While a typical BP run took couple of minutes to
1-2 hours (depend on the number of specimens), a typical
GPSR run took seconds. For large scale simulations, as
in this study, such differences accumulate to many CPU
hours. Therefore, we recommend using GPSR for the initial
performance estimations in large scale compressed carrier
screen simulations.

IV. CONCLUSION

We proposed an ultra-high throughout carrier screen for
rare genetic diseases. Our method harnesses the sequencing
power of NGSTs by mapping the multiplexing problem to
a CS framework, with several unique features. We demon-
strated the rigor of the method in extensive simulations of
carrier screens for prevalent Ashkenazi disorders, and found
that a tailored Bayesian solver outperforms an off-the shelf
CS solver.

APPENDIX

We introduced two improvements to the BP algorithm
that was presented by us in [7]. The main limitation of the
previous method was long running times for inputs with large
number of specimens. In the new version, we implemented a
stripping method that evaluates which pools (factor nodes) do
not have carriers and stripes them off from the factor graph.
Each time we remove a factor node, we fixed its connected
variable nodes to be 0 (no carrier), and stripped them off
also from the factor graph. Then, we updated the observed
data in the remained factor nodes to fit the corrected graph.

In order to evaluate whether a factor node contains no
carriers, we calculated the relative ratio of the two competing
hypothesis: H0 - there are no carriers in the pool; and H1

- there is at least one carrier in the pool. Let r be the total
number of reads from the pool, f - the fraction of reads
that corresponds to the non-functional allele, n - the number
of specimens in the pool, c - the expected carrier rate in
the population, and α - the sequencing noise level, namely
the probability that a sequence read from a non-functional
allele will be reported as WT, and vise verse (we assume
symmetric sequencing errors). H0 and H1 are given by:

Pr(H0) = q0p0 (2)

Pr(H1) =
n∑
k=1

qkpk (3)

where pk denotes the probability of having k carriers in
the pool, and qk denotes the likelihood of the data given

that there are k carriers in the pool. pk and qk are Poisson
probabilities given by:

pk = Pois(k;nc) (4)
qk = Pois(fr; ρr) (5)

and:

Pois(k;λ) =
λke−λ

k!
(6)

ρ = α+
k(1− 2α)

2n
(7)

Once the ratio Pr(H0)/Pr(H1) crossed a user-determined
threshold, we applied the stripping procedure to the factor
node, and to its connected variables.

We then updated the observed data of the factors nodes
that were connected to a stripped variable node. Let:

a = (1− f)r − z(1− α) (8)
b = fr − zα (9)
z = r/n (10)

The new number of reads (r′) and the new fraction of non-
functional reads (f ′) in the factor node was set to:

r′ = a+ b (11)

f ′ =
a

r′
(12)

where f is the previous fraction of reads from the non-
functional allele, and r is the previous number of reads in
that factor node.

An additional improvement of the BP algorithm was
considering two damping levels. We noticed in our previous
study [7] that the convergence probability increased once the
damping level crossed a threshold. Thus, instead of using a
fixed damping level, we used here two damping values: 0.5
and 0.8, and if the algorithm did not converge in the lower
value, it tried the higher one. We found that the stronger
damping level (0.8) facilitated the convergence of heavy
weight inputs (w ≥ 6), while the weaker damping level
(0.5) facilitated the convergence of light weight inputs. In
is worth noting that in other studies that used BP solvers for
CS , damping did not play any role in the convergence rate
(Dror Baron - personal communication). It will be interesting
in the future to study the the sensitivity of CS solvers to the
damping level.
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