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RNA interference (RNAi) has developed 

into a powerful tool for probing gene

function. Recently, several reports have

demonstrated the use of RNAi for

attenuation of viral infection and

replication in cultured cells. Furthermore,

RNAi has been shown to suppress gene

expression in adult animals. Although

these results suggest that RNAi might

become a novel therapeutic approach,

significant hurdles must still be overcome

before RNAi can be exploited in the fight

against human disease.

The phenomenon of RNA interference

(RNAi) was first described by Fire et al.

approximately four years ago [1]. 

They observed that the response to

double-stranded RNA (dsRNA) in the

nematode, Caenorhabditis elegans,

resulted in potent sequence-specific 

gene silencing at the post-transcriptional

level. The RNAi pathway has since been

recognized as a conserved biological

module, and numerous experimental

models have contributed to the

understanding of it.

Mechanistically, RNAi is a two-step

process (Fig. 1). In the first step, the dsRNA

that triggers the silencing response is

cleaved into small interfering RNAs

(siRNAs) [2,3] of 21–23 nucleotides. This

is accomplished by Dicer, an RNase-III-

family nuclease [4]. In the second step,

siRNAs are incorporated into a targeting

complex, known as RISC (RNA-induced

silencing complex), which destroys

mRNAs that are homologous to the

integral siRNA [3]. The net result is a

suppression of gene expression.

RNAi as an RNA-based cellular

‘immune system’

The complete spectrum of biological

processes in which the RNAi machinery

acts is far from clear. However, both

biochemical and genetic studies have

shown that RNAi is an important means

of combating viral infection in plants

(reviewed in [5]). Single-stranded-RNA

viruses produce dsRNA as a replication

intermediate. Exploiting this ‘endogenous’

dsRNA trigger, the plant cell uses RNAi

to target viral genomic RNAs, breaking

the replication cycle of the virus and

preventing its systemic spread.

Interestingly, plant viruses have evolved

mechanisms to suppress the RNAi

response, in much the same way that

many animal viruses have developed

methods to suppress antiviral immune

responses. Many plant viruses express

specific proteins that interfere with the

RNAi machinery. Although these viral

inhibitors of gene silencing are normally

essential for pathogenesis, they become

dispensable in plants with genetic lesions

in RNAi pathways (reviewed in [5]). This

phenomenon has recently been observed

in an animal system; flock-house virus, an

insect virus of the nodavirus family, contains

a virulence determinant – similar to those

found in some plant viruses – that is not

required in Drosophila cells in which the

RNAi response has been attenuated [6].

Furthermore, some elements of RNAi

pathways are required for suppressing the

movement of transposons in C. elegans [7,8].

It has been suggested that the RNAi

response might be an evolutionarily

conserved mechanism for combating
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the generation of DSBs to chromosome

rearrangements in permissive cells, and

hence to oncogenic progression [6,7]. The

molecular characterization of such

alternative DNA repair pathways should

be an important goal of future research.
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viruses or parasitic endogenous genetic

elements. However, mammals, with their

adaptive immune systems, have clearly

evolved alternative, or perhaps additional,

defense mechanisms. Nevertheless, it is

clear that RNAi pathways, which are

conserved in mammalian cells, might be

exploited therapeutically as an antiviral

defense to augment the adaptive immune

system. However, the use of RNAi as an

experimental or therapeutic tool in

mammalian systems was initially

problematic owing, ironically, to the

presence of an endogenous antiviral

response. In most mammalian somatic

cells, dsRNA of >30 bp activates a set of

pathways that ultimately induce cell

death. These mechanisms are enhanced

by the presence of interferons, but even in

the absence of these immune modulators,

dsRNA activates Protein Kinase R (PKR)

and RNase L pathways, leading to a

generalized suppression of gene

expression followed by apoptosis.

RNAi in mammalian cells

Recently, two approaches have been

developed that avoid nonspecific dsRNA

responses and that permit the exploitation

of RNAi for sequence-specific silencing in

mammalian somatic cells. The first is 

the use of synthetically produced siRNAs

of 21 bp in length that are essentially

chemically synthesized mimics of Dicer

cleavage products (Fig. 1). These small

RNAs have been shown to induce sequence-

specific gene silencing when transiently

transfected into mammalian cells [9], and

they have become a powerful experimental

tool for probing gene function. A second

strategy uses expression constructs

harboring a 19–29 bp inverted repeat 

that forms a short hairpin (shRNA) when

transcribed in vivo. It reproduces the

secondary structure of endogenous

interfering RNAs (micro RNAs) [10,11]. The

use of shRNAs extends the utility of RNAi in

mammalian cells because hairpin RNAs can

be expressed stably from integrated vectors.

Because effective silencing can 

now be achieved using ‘classical’DNA

expression vectors, it should be possible

to adapt RNAi to adult mammals by its

incorporation into established gene-

therapy vehicles. Retroviral delivery of

shRNA expression constructs into

mammalian cells has been achieved [12],

and several investigators are currently

evaluating the efficacy of adenoviral

transduction. Induction of RNAi following

hydrodynamic transfection of shRNA

expression vectors or siRNA into the liver

and other somatic tissues has been

reported [13,14].

RNAi as an antiviral therapy

Following the discovery that RNAi

pathways exist in mammalian cells, 

it has been proposed that this biological

response might be exploited for

therapeutic purposes. Partly because of

the natural role of RNAi as an antiviral

defense in plants, pathogenic human

viruses were deemed a good starting

point for evaluating the therapeutic

potential of RNAi. Recently, several

groups have explored the use of RNAi to

limit infection by viruses in cultured cells,

initially focusing on HIV [15–17] and

poliovirus [18]. Several different

strategies were used, and all the studies

yielded encouraging results.

For example, Jacque et al. directed

siRNAs against several regions of the

HIV-1 genome, including the viral long

terminal repeat (LTR) and the accessory

genes, vif and nef [15]. Using Magi cells

(CD4-positive HeLa cells) as a model

system, they demonstrated a sequence-

specific reduction of >95% in viral

infection after cotransfection of siRNAs

with an HIV-1 proviral DNA (Fig. 2).

When the same assay was done in

primary peripheral blood lymphocytes,

which are natural targets for HIV-1, the

frequency of infected cells was also

substantially reduced.

In this study, transfection of cells with

the infectious HIV-1 DNA clone reproduced

late events in the viral life cycle. One

potential concern was that retroviral

genomes, tightly associated with

nucleocapsid proteins, might be resistant

to siRNA-induced destruction. However,
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Fig. 1. The RNA interference (RNAi) pathway. RNAi is a  two-step process that results in the degradation of targeted
mRNAs. In stage (1), exogenous double-stranded RNA >21–23 bp (dsRNA) is cleaved into 
small interfering RNAs (siRNAs) by Dicer. In stage (2), siRNAs are incorporated into an RNA-induced silencing
complex (RISC), which destroys mRNAs that are homologous to the integral siRNA. Short hairpin RNAs (shRNAs)
transcribed in vivo from expression constructs or chemically synthesized siRNAs (both red) can be used to artificially
stimulate this pathway.

‘……it is clear that RNAi pathways, which 

are conserved in mammalian cells,

might be exploited therapeutically as 

an antiviral defense……’



Jacque and colleagues reported that 1 h

after infection, genomic viral RNA was

undetectable in cells previously transfected

with homologous siRNAs, and that the

synthesis of viral cDNA intermediates was

greatly inhibited [15]. The authors also

examined whether shRNAs directed against

vif produced inhibition similar to that seen

with siRNAs. Cotransfection experiments

in Magi cells revealed a suppression of

~95%. Similar results were obtained by

Novina and colleagues in experiments

targeting the HIV gag gene [17].

In a separate study, Lee et al. used a

construct that produced an in-vivo-

transcribed siRNA targeting the HIV-1

nonstructural protein, rev [16]. They

showed that cotransfection of HIV-1

proviral DNA with this construct in

293 cells reduced the level of viral antigen

in viral supernatants by four orders of

magnitude, with a corresponding loss of

viral integration.

Additional support for the potential of

RNAi as an antiviral therapy has come

from studies of other pathogenic viruses.

For example, Gitlin et al. attenuated

infection by poliovirus after transfection

with siRNAs that targeted either a

capsid-protein mRNA or the viral

polymerase mRNA [18]. They also showed

that mutation of the viral genome within

the sequence targeted by siRNAs led to

the production of a resistant variant.

Similarly, RNAi has been used to

attenuate infection by Rous Sarcoma

Virus in chick embryos [19], and

sequences within the Hepatitis-C virus

have been successfully targeted in living

mice when present as a fusion with a

reporter construct [13].

Targeting of viral versus host mRNAs

Unfortunately, the targeting of viral

mRNAs using RNAi might suffer 

from three significant disadvantages.

First, viral genomes might not be 

freely accessible in the context of the

nucleocapsid, although success in

targeting early steps of the HIV life 

cycle suggest that this might not be as

problematic as had been anticipated [15].

Second, individual isolates of many

viruses contain sequence variations that

could complicate the design of inhibitory

RNAs. Third, reverse transcriptases and

RNA replicases are notoriously error-

prone, increasing the likelihood of the

emergence of mutant, resistant variants.

An alternative approach is therefore to

target host mRNAs whose protein

products are essential for the viral life

cycle. For example, Novina et al. used this

method to suppress CD4 expression on

host cells, thus preventing HIV entry and

subsequent replication (Fig. 2) [17].

Variations on this approach might lend

themselves to ex vivo manipulation of

stem cells to create virus-resistant

populations for autologous transplantation.

Conclusions

Several recent reports have provided

proof-of-concept that RNAi can be used to

intervene at multiple points in the virus

life cycle. However, many questions need

to be addressed, and many problems still

need to be solved, before RNAi can realize

its potential as an antiviral therapy. For

example, all the experiments described

above were performed using cell-culture

models. Although siRNAs and shRNAs

have been shown to function in adult

mammals [13,14], as with all nucleic-acid-

based therapies, efficiently delivery in vivo

remains the most significant hurdle.
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Fig. 2. Strategies for targeting viruses in mammalian cells. The lifecycle of the HIV virus: (a) infection of 
a cell expressing the CD4 receptor, (b) release of single-stranded RNA (ssRNA), (c) reverse transcription to double-
stranded DNA (dsDNA), (d) integration into the host genome, (e) transcription of viral genes, and (f) progeny-virus
production and release. HIV infection and replication have been targeted by RNA interference (RNAi) using either
short hairpin RNAs (shRNAs) transcribed in vivo from expression constructs, or chemically synthesized small
interfering RNAs (siRNAs) (both red). RNAi has also been used to suppress CD4 expression in host cells (blue), thus
preventing HIV entry and subsequent replication. 
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RNAi to limit infection by viruses in cultured

cells……and all these studies yielded

encouraging results.’
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