
that it can exist in two forms,or enantiomers,
that are non-superimposable mirror images
of each other. In 1866, Desiré Gernez wrote
to his former colleague Pasteur, describing
the result of an interesting experiment4.
Following on from Pasteur’s work, Gernez
had discovered that the addition of seed crys-
tals of pure enantiomer to a racemic solution
of the tartrate — one containing equal
amounts of the two enantiomers — yielded,
not a racemic solid, but crystals of the same
chirality as the seed. Separations based on
this observation have become known as ‘res-
olutions by entrainment’4 and are part of the
armoury of the modern-day chemical-
process developer.

Not surprisingly, it was chemical engi-
neers, interested in designing continuous
crystallization processes, for whom seeding
(or secondary nucleation, as they termed it)
became a central issue. In 1934, Ting and
McCabe5 showed that solutions of magne-
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interfering dsRNA is made directly by the
cells themselves. A vector directing the
transcription of precise short hairpin RNAs
— shRNAs — by RNA polymerase III is
introduced into the cells; these transcribed
shRNAs are processed by the cell to give the
small interfering dsRNAs (siRNAs) that turn
off the target gene. shRNA-expressing vec-
tors allow for sustained RNAi in a wide range
of cell lines (including embryonic stem cells,
the subject of much current research). A
complete library of shRNA-expressing vec-
tors designed to target each and every gene in
a mammalian genome would thus allow
genome-wide RNAi-based genetic screens in
cells in culture. Put simply, for any process
that we are interested in (cell division,
response to DNA damage and so on), with
such an shRNA library we could screen
every gene in the human genome and ask if
it is involved.

Both groups4,5 have converged on the
same basic shRNA library approach, each
generating a retrovirus-based library capa-
ble of targeting around a third of human
genes; the genes were chosen for their poten-
tial roles in disease. Different shRNAs often
interfere to differing extents with a target
gene, so at least three shRNAs have been
cloned for most genes. This multiple cover-
age not only provides an internal control,but
may also allow comparison of both strong
and weak ‘knock-downs’ of a specific gene
in an analogous way to a classical genetic
approach7.

Berns et al.5 used their library to search
for genes that affect the function of p53, a
tumour-suppressor gene that kills or ‘arrests’
cells with damaged DNA. They screened
around 8,000 human genes to find those
required for a p53-dependent arrest of cell
proliferation and identified six genes,
including p53 itself. Further assays confirm
that these genes — which include a histone
acetyl transferase and a histone deacetylase,
two key regulators of gene expression — do
indeed play a role in p53-induced cell-cycle
arrest and senescence. This ability to survey
the gene functions of a full third of the
human genome so rapidly is breathtaking,
and the success of the subsequent assays
underscores the quality of this approach.

The retrovirus-based vectors used by
both groups are excellent for many cell-
based screens. But they cannot be used for
the stable expression of shRNAs in all cell
types — this requires moving the shRNA-
encoding inserts to different vectors. The
shRNA library described by Paddison et al.4

incorporates an elegant system for shuttling
the inserts into any destination vector simply
using bacterial mating. Their sequence-
verified shRNA library targets almost 10,000
human genes; the shRNAs have also been
chosen to allow targeting of the mouse
orthologues (equivalents) of those human
genes, if possible, and over 5,000 mouse

Figure 1 Hey, brown sugar: Cacciuto et al.3 offer
new insight into the seeding of crystallization.

One of the most intuitive ways to
learn how a complicated machine
works is to take it apart piece by

piece — a directed ‘learning by breaking’.
For biologists, teasing apart the machinery
underlying the form and function of an
organism can be done, most simply, by
removing genes one at a time and looking
at the effect. One experimental method for
turning genes off is known as RNA interfer-
ence (RNAi; Box 1, overleaf); this has shot
to prominence because it allows almost any
gene of known sequence to be shut down
with apparently magical ease1.

In two of the biologist’s favourite model
organisms, nematode worms and fruitflies,
RNAi has been used to turn off almost every

one of their genes2,3. Such genome-wide
RNAi surveys of gene function have
remained out of reach in mammals — until
now, that is, for on pages 427 and 431 of this
issue Paddison et al.4 and Berns et al.5 report
the generation of tools to allow RNAi mass-
screening of mammalian genes. This at last
makes it possible to carry out genetic screens
in mammalian cells in culture.

There is a range of effective strategies for
RNAi in mammalian cells (reviewed in ref.
6), and they differ principally in the method
for getting the double-stranded RNA
(dsRNA) that specifically interferes with the
target gene into the cells. In one method,
rather than synthesize the dsRNA chemically
before introducing it into the cells, the

RNA interference 

Human genes hit the big screen
Andrew Fraser

Genetic screens are powerful tools for identifying the genes involved 
in specific biological processes. At last, RNA interference makes 
large-scale screens possible in mammalian cells.

sium sulphate could be nucleated more
reproducibly at moderate supersaturations
in the presence of seeds. Today, commercial
crystallization processes operate at suspen-
sion densities of perhaps 20%, ensuring that
seeding levels are always high.

Some clever experiments6 in the 1970s
on the seeded nucleation of enantiomers of
sodium chlorate revealed that, as long as the
supersaturations were not too high, all the
crystals were enantiomerically identical to
the seed. The experiments also showed that
the new crystals originated from the seeds
through their contact with the crystallizing
vessel. We now know that secondary nucle-
ation, and hence seeding, can often be more
effective because of mechanical and liquid-
shear damage at the seed surface7. Such
damage would remove potential nuclei
from the seed, allowing them to become
free-growing crystals.This seems to be a tan-
talizing reflection of what Cacciuto et al.3

have now shown.
Time,I think,for some new experiments.

Roger J. Davey is at the Molecular Materials Centre,
Department of Chemical Engineering, UMIST,
Manchester M60 1QD, UK.
e-mail: roger.davey@umist.ac.uk
1. Ostwald, F. W. Z. Phys. Chem. 22, 289–302 (1897).

2. Garside, J. & Davey, R. J. From Molecules to Crystallizers — An

Introduction to Crystallization Ch. 3 (Oxford Univ. Press, 2000).

3. Cacciuto, A., Auer, A. & Frenkel, D. Nature 428, 404–406 (2004).

4. Jacques, J., Collet, A. & Wilen, S. H. Enantiomers, Racemates,

and Resolutions 223 (Wiley, Chichester, 1994).

5. Ting, H. H. & McCabe,W. L. Ind. Eng. Chem. 26, 1201–1207

(1934).

6. Denk, E. G. & Botsaris, G. D. J. Cryst. Growth 13/14, 493–499

(1972).

7. Mullin, J. W. Crystallization 3rd edn, Chs 5, 6

(Butterworth–Heinemann, Burlington, MA, 1992).

R
.J

.D
AV

E
Y

25.3 n&v MH  19/3/04  4:59 pm  Page 375

©  2004 Nature  Publishing Group



news and views

NATURE | VOL 428 | 25 MARCH 2004 | www.nature.com/nature 377

genes can be targeted using their clones. This
library of easily transferable shRNAs is a
beautifully designed resource, and should
permit an impressive range of analyses in
diverse cell types.

To increase the speed of RNAi screening,
both groups4,5 borrow a sequence identifier
(bar-code) system, developed in studies on
yeast, for the quantitative analysis of pools
of genes8. Each shRNA construct has a
unique bar-code — Berns et al. use the
shRNA sequence itself, whereas Paddison et
al. have an independent bar-code,which they
report as being of far greater effectiveness.
The abundance of each shRNA construct in
a pool of constructs can be assessed by moni-
toring the relative levels of each bar-code
using a microarray. Thus any screen for
genes that confer a growth advantage (or
defect) can be carried out by the simultane-
ous screening of large pools of shRNA-
expressing vectors, greatly increasing the
throughput. Bar-coding is still in its infancy
but has great potential for analysing RNAi
selection screens.

There are still some uncertainties sur-
rounding mammalian cell RNAi, especially
regarding both specificity and efficiency
of targeting. According to one report9, a
sequence identity of as few as 11–12
nucleotides between an interfering RNA and
a messenger RNA may be sufficient for inter-
ference to occur. If it is, cross-reactivity is a
substantial problem: far from targeting one
gene, many expressed shRNAs may target
several genes simultaneously. Similar analy-
ses10 came to the opposite conclusion, how-
ever, so it remains to be seen whether this is a
general problem. Even if cross-reactivity
does occur, there are straightforward con-
trols for specificity: most simply, if two
independent shRNAs targeting the same
gene give similar effects, it is probably safe to
conclude that this is specific to the targeted
gene, and not due to some ‘off-target’ cross-

reaction. This is precisely the approach
adopted by Berns et al. and the presence in
each of the libraries reported here of multi-
ple shRNAs against each gene should make
these internal controls relatively easy.

As regards RNAi targeting efficiency, it is
clear that — as in worms or flies — different
genes in mammalian cells are turned off
with differing efficiencies. For example,
Paddison et al. screened their library to
identify components of the proteasome, a
cellular machinery that degrades many
unwanted proteins and that is implicated in
certain diseases. Although genes encoding
some subunits (those for the 19S base, for
example) were apparently easily identified,
others (such as those of the 19S lid or 20S
core) were harder to hit. Like any screening
tool, RNAi is unlikely ever to be perfect.
As the rules for predicting effective shRNAs
continue to improve, however, the false-
negative rate will drop, and the libraries
will improve.

Despite these notes of caution, we will
no doubt see an explosion in RNAi screen-
ing of mammalian cells over the coming
months. As with any genetic screen, the
power of each RNAi screen depends on
the appropriate choice of functional read-
out, and that will require development of a
variety of cell-based assays (such as the
assay for proteasomal function reported by
Paddison et al.). As no single laboratory can
specialize in every aspect of gene function,
the general availability of these shRNA
libraries as communal resources is a major
step forward, harnessing the screening
expertise of the entire mammalian-cell
research community. Pulling together the
data from these varied RNAi screens in a
common, central database will take our
understanding of mammalian gene func-
tion a further giant stride forward. ■

Andrew Fraser is at the Wellcome Trust Sanger
Institute, Wellcome Trust Genome Campus,

RNA interference silences 
a target gene through the
specific destruction of that
gene’s messenger RNA, the
intermediary molecule between
DNA and protein. Double-
stranded RNA (dsRNA) is central
to the technique: when dsRNA
with identical sequences to a
specific mRNA is introduced
into cells, the mRNA is
recognized and degraded by a
multiprotein body called the
RNA-induced silencing
complex. Destruction of the
target mRNA leads to a drop
in the levels of its encoded
protein, and thus to inhibition 

of the target gene.
In worms and flies, dsRNAs

of hundreds of nucleotides can
be used to target a gene.
However, in mammalian cells
long dsRNAs induce a potent
anti-viral response, shutting
down the synthesis of all
proteins. So more sophisticated
strategies are required, and
small interfering RNAs (siRNAs)
are used instead. These siRNAs
are about 21 nucleotides long,
and are efficiently used by the
RNA-induced silencing complex
but are too short to activate a
full-blown anti-viral dsRNA
response.

siRNAs can either be made
in vitro and subsequently
introduced into cells, or they
can be made directly in cells
through the expression of short
hairpin RNAs (shRNAs). shRNAs
fold back on themselves,
creating a region of dsRNA 
and a loop. This hairpin is
processed enzymatically to
remove the loop and generate
a mature siRNA. Expression of
shRNAs can be used to induce
RNAi in transgenic mice as 
well as in cell lines, so the
technique can be applied to
investigate gene function in
whole animals. A.F.

Box 1RNA interference:a primer

100 YEARS AGO
It is not surprising to find that at last a
‘motor’ pocket book has appeared; in fact,
it is a wonder such a work has not appeared
sooner… Our author has a breezy style 
of expression which adds largely to the
pleasure of reading the book. Take, for
instance, his treatment of that all-important
worry of the motorist, the ‘police’.
Mr O’Gorman says, “to pass unchallenged 
at a speed in excess of the legal limit 
— a thing which is daily accomplished by
carts, hansoms, and even by the London
omnibuses on almost every run when the
gradients favour them… remember that by
sitting upright with a calm face (on a quiet
car) you produce no impression of speed
except on turning a corner. If you turn a
corner without being able to see down 
the road you are entering at over 20 miles
per hour you deserve to be punished. If,
however, you stoop forward… jamb your 
hat over your eyes, screw up your face,
stare intently and anxiously, do a great 
deal of steering with visible swinging of your
body, blow your horn in such a manner as to
say ‘Get out of my way’ frequently, instead of
pressing it slowly and peaceably, you will
invariably be arrested.”
From Nature 24 March 1904.

50 YEARS AGO
Another statement claimed by Prof. Dingle 
to be fallacious is connected with an
underlying assumption in experimental
science; this assumption is that the
repetition of an experiment will reproduce
the original results. But experimental
science is not based on an assumption; “it is
an adventure in which you accept whatever
you find, and although you may be guided 
in a particular case by an expectation, the
experiment may reveal something totally
different”. An instance of this is found in the
case of Schwabe, who counted sunspots
with the object of finding an intra-Mercurial
planet, and instead of doing so he found 
the eleven-year solar period... it would be
futile to believe that the achievements of
experimental science would necessarily 
lose all significance if it were discovered
that some assumption proved baseless. In
the realm of psychology it is accepted that
no experiment when repeated produces the
original result, and even in physics it has
been held for a long time that no experiment
is repeatable, the entropy of the universe
never being twice the same.
From Nature 27 March 1954.
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Ahallmark of intelligent learning is
that we can apply what we have
learned to new situations. In the

mathematical theory of learning, this ability
is called generalization. On page 419 of this
issue1, Poggio et al. formulate an elegant
condition for a learning system to general-
ize well.

As an illustration, consider practising
how to hit a tennis ball.We see the trajectory
of the incoming ball, and we react with com-
plex motions of our bodies. Sometimes we
hit the ball with the racket’s sweet spot and
send it where we want; sometimes we do less
well. In the theory of supervised learning,an
input–output pair exemplified by a trajec-
tory and the corresponding reaction is called
a training sample. A learning algorithm
observes many training samples and com-
putes a function that maps inputs to out-
puts.The learned function generalizes well if
it does about as well on new inputs as on the
old ones: if this is true, our performance
during tennis practice is a reliable indication
of how well we will play during the game.

Given an appropriate measure for the
‘cost’ of a poor hit, the algorithm could
choose the least expensive function over the
set of training samples,an approach to learn-
ing called empirical risk minimization. A
classical result2 in learning theory shows that
the functions learned through empirical risk
minimization generalize well only if the
‘hypothesis space’ from which they are cho-
sen is simple enough. That there may be
trouble in a poor choice of hypotheses is a
familiar concept in most scientific disci-
plines. For instance, a high-degree poly-
nomial fitted to a set of data points can swing
wildly between them, and these swings
decrease our confidence in the ability of
the polynomial to make correct predictions
about function values between available data
points. For similar reasons, we have come to
trust Kepler’s simple description of the ellip-
tical motion of heavenly bodies more than
the elaborate system of deferents, epicycles
and equants of Ptolemy’s Almagest, no mat-
ter how well the latter fit the observations.

The classical definition of a ‘simple
enough’ hypothesis space is brilliant but
technically involved. For instance, the set of
linear functions defined on the plane
has a complexity (or Vapnik–Chervonenkis
dimension2) of three because this is the
greatest number of points that can be
arranged on the plane so that suitable linear
functions assume any desired combination
of signs (positive or negative) when evalua-
ted at the points. This definition is a mouth-
ful already for this simple case.Although this
approach has generated powerful learning
algorithms2, the complexity of hypothesis
spaces for many realistic scenarios quickly
becomes too hard to measure with this
yardstick. In addition, not all learning prob-
lems can be formulated through empirical
risk minimization, so classical results might
not apply.

Poggio et al.1 propose an elegant solution
to these difficulties that builds on earlier
intuitions3–5 and shifts attention away from
the hypothesis space. Instead, they require
the learning algorithm to be stable if it is to

Learning theory

Past performance and future results
Carlo Tomasi

Learning from experience is hard, and predicting how well what we have
learned will serve us in the future is even harder. The most useful lessons
turn out to be those that are insensitive to small changes in our experience.
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produce functions that generalize well. In a
nutshell, an algorithm is stable if the removal
of any one training sample from any large set
of samples results almost always in a small
change in the learned function. Post facto,
this makes intuitive sense: if removing one
sample has little consequence (stability),
then adding a new one should cause little
surprise (generalization). For example, we
expect that adding or removing an obser-
vation in Kepler’s catalogue will usually
not perturb his laws of planetary motion
substantially.

The simplicity and generality of the sta-
bility criterion promises practical utility. For
example,neuronal synapses in the brain may
have to adapt (learn) with little or no
memory of past training samples. In these
cases, empirical risk minimization does not
help, because computing the empirical risk
requires access to all past inputs and outputs.
In contrast, stability is a natural criterion to
use in this context, because it implies
predictable behaviour. In addition, stability
could conceivably lead to a so-called online
algorithm — that is, one that improves its
output as new data become available.

Of course, stability is not the whole story,
just as being able to predict our tennis per-
formance does not mean that we will play
well. If after practice we play as well as the
best game contemplated in our hypothesis
space, then our learning algorithm is said to
be consistent. Poggio et al.1 show that stabil-
ity is equivalent to consistency for empirical
risk minimization, whereas for other learn-
ing approaches stability only ensures good
generalization.Even so,stability can become
a practically important learning tool,as long
as some key challenges are met. Specifically,
Poggio et al.1 define stability in asymptotic
form, by requiring certain limits to vanish as
the size of the training set becomes large. In
addition, they require this to be the case for
all possible probabilistic distributions of the
training samples. True applicability to real
situations will depend on how well these
results can be rephrased for finite set sizes. In
other words, can useful measures of stability
and generalization be estimated from
finite training samples? And is it feasible to
develop statistical confidence tests for them?
A new, exciting research direction has
been opened. ■
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In or out: success rests on learning algorithms
that are stable against slight changes in input
conditions1.
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